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Generalised Pippard’s relations for a fluid mixture in 
homogeneous states in the vicinity of a line of tricritical or 
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Abstract. By an argument akin to that which has been used by S V Subramanyam, R 
Ramachandra and E S R Gopal to obtain generalised Pippard’s relations for the vicinity of a 
line of ordinary critical points of a fluid mixture, further generalisations are obtained for the 
vicinity of a line of tricritical or polycritical points in cases not involving special symmetries. 

1. Introduction 

Kohnstamm (1926) envisaged a possibility that three fluid phases might simultaneously 
cease to be distinguishable, instead of two as at an ordinary critical point. Such a 
phenomenon, and analogous behaviour in magnetic and other systems with special 
symmetries, has become a subject of increasing attention (relevant publications includ- 
ing those of Landau 1937, Zernike 1949, Radyshevskaya et a1 1962, Krichevski et a1 
1963, Efremova and Shvarts 1966, Griffiths 1970,1973,1974, Straley and Fisher 1973, 
Chang et a1 1973, Hankey et a1 1973, Harbus et a1 1973, Schulman 1973, Wegner and 
Riedel 1973, Lang and Widom 1975, Scott 1978). 

The present communication is concerned with generalisations, to such tricritical 
points of fluid mixtures, and to corresponding points at which more than three phases 
simultaneously cease to be distinguishable, of the type of approximate thermodynamic 
relation originally obtained by Pippard (1956) for such cases as the A transition of liquid 
helium. Among various discussions of behaviour near an ordinary critical point of a 
fluid mixture (Wheeler and Griffiths 1968, Saam 1970, Leung and Griffiths 1973, 
Chang 1973, Subramanyam et a1 1974), the treatment by Subramanyam et a1 proves a 
particularly appropriate starting point for the present work. Their generalisations of 
Pippard’s relations turn out to be very similar to those which are appropriate to the 
present more general cases. 

2. Starting point of the argument to be used 

Consider a mixture of components A, B, C . . . L. Possible states may be represented by 
points in a space in which the coordinates are T, p ,  and the mole fractions ( x B ,  xc . . . xL, 
say) of all but one of the components. The points of particular interest are any which 
represent a state for which two or more (k, say) phases simultaneously become 
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indistinguishable, as this state is approached from a region of heterogeneous states in 
which k phases are present. Alternatively, these points may be characterised as any 
which represent a state at which k phases simultaneously become just distinguishable, 
as this state is approached from a region of homogeneous states. 

For there to be a one-dimensional continuum of such critical (k = 2), tricritical 
( k  = 3 )  or polycritical (k > 3) points, there must (unless there are special symmetries) be 
2k - 2 components in all (Zernike 1949), and the space involved is (2k - 1)-dimen- 
sional. For example, for a line of ordinary critical points, there must be two 
components, and the space involved is three-dimensional with coordinates (T, p ,  x B ) ;  
and for a line of ordinary tricritical points, there must be four components, and the 
space is five-dimensional with coordinates (T, p ,  XB, X C ,  XD). 

To obtain generalisations of the relations inferred by Subramanyam etal (1974), an 
argument of the following type may be used. Take it that a critical, tricritical or 
polycritical point may be characterised by some quantity rf, (such as C,, or the thermal 
expansion) either becoming infinite or exhibiting singular behaviour of some other 
kind. When there ist a line 3 of such points at which rf, exhibits a singularity as the point 
is approached from the region of points representing homogeneous states, it is to be 
expected (compare figure 1) that in this region there will be, near the line 3, a family of 
hypersurfaces X of constant rf, which are nearly parallel to this line. (Compare an 
argument given by Rice (1954, 1967) for cases which involve only a two-dimensional 
space.) Then the value of (say) dT/dp along the line 2’ will approximate to that of 
dT/dp for a curve 9”’ drawn roughly parallel to 3 in one of these hypersurfaces X; and 
on this basis it is possible to infer approximate relations involving values of dT/dp, 
dnB/dp, etc, along the line 3. 

Figure 1. A partial analogue of the situation to be considered. A quantity # is infinite on 
line ab and surfaces acfb, adeb, agjb and ahib, and may be infinite or undefined within the 
wedge-like region from ab to cdef, and that from ab to ghij. 

The surface TJ. close to ab, but not extending too close to acfb or ahib, is: (i) a surface on 
which II. is large and constant; (ii) roughly parallel to ab. 

t Not necessarily a straight line, but a line assumed to have only a well behaved mild curvature 
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3. Some general relations for smooth curves in a space of four or more dimensionst 

Let V be any smooth curve whatsoever in one of the hypersurfaces X. Then along curve 
V a relation 

holds (where the omission of subscripts in partial derivatives is to be taken as indicating 
that the quantities held constant are all other members of the set of variables 
{T, p, xE, xc . . , xL}). It then follows that along any smooth curve V lying in a hypersur- 
face X: 

(provided that a4/aT is neither zero nor infinite). 

such a curve is a special case of a curve V lying in that hypersurface. 
In particular, such an equation holds for any curve B lying in a hypersurface 2, since 

4. Resulting generalisations of Pippard’s relations 

Let the subscript k indicate a quantity relating to a critical, tricritical or polycritical state 
(whichever it is that is involved). Then, for example, T k  will denote a critical, tricritical 
or polycritical temperature; and dTk/dp will be equal to dT/dp for the line 9; and thus 

dTk/dp-dT/dp for a curve B. (3) 
Similarly, the effect of pressure on a critical, tricritical or polycritical composition is 
given by 

dxik/dp - dxi/dp for a curve 9. (4) 
But, provided that a4/aT is neither zero nor infinite, these derivatives along a curve 

9 are related by equation (2) above; and therefore it can be seen that 

where the values of a+/aT, &$lap, a4/axi relate not to a critical, tricritical or polycritical 
point, but to a neighbouring homogeneous state of the fluid mixture. 

Some particular cases of this equation are as follows: 

(i) If 4 be taken to be C, (=aH/aT) then, noting that aC,/ap = -Ta2V/aT2 and 
aH/axi = k?, - f i ~  (where the tilde denotes a partial molar quantity), it can be seen that 
equation ( 5 )  becomes 

other than A 

t I am grateful to Dr D P Thomas for helpful discussion of mathematical matters involved here. 
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where hI2 denotes the slope of a Pippard-like plot of a V/aT against C,, and h l i  that of a 
corresponding plot of fii-fiA against C,: in both cases plotting values for homo- 
geneous states over a range of temperature close to T k .  

If the plots are roughly linear, it can be seen to follow that (for homogeneous states 
over a range of temperature close to T k )  

other than A 

(i') If were instead taken to be CJT (=aS/aT), a similar argument would indicate 
that (if the plots involved were roughly linear) 

(ii) If were taken to be aV/aT, the first relation obtained in this way would be 

other than A 

where v12 denotes the slope of a Pippard-like plot of -aV/ap against aV/aT, and v l i  
that of a corresponding plot of - PA against aV/aT; plotting values for homo- 
geneous states over a range of temperature close to T k .  Then, if the plots were roughly 
linear, it would follow that 

Relations (6) to (10) would suggest that, for homogeneous states near a line of 
ordinary critical, tricritical or polycritical points, there would be correlated sharp 
maxima or minima in aV/aT, -av/ap, f i i - f iA ,  and so forth, associated with the 
maximum in C,,. Relations (6) and (9), however, involving the slopes of Pippard-like 
plots and the dependence of Tk and Xik on pressure, do not correspond to any 
connection so simple as the 

dT./dp- 0 1 2  

derived by Pippard for such cases as the A transition of liquid helium. For an ordinary 
critical point, this difference was pointed out by Subramanyam et a1 (1974). 

- PA is likely to 
be much less marked than one in C,. Such a conclusion may be reached in various ways 
(compare Griffiths and Wheeler 1970), and in particular by considering the behaviour 
of azH/axi or a2v/a& at an ordinary critical point. An argument that both would 
vanish (Rowlinson 1965) soon received experiEenta1 support (Dunlap and Furrow 
1966, Myers et a1 1966). Now the value of H B - H A  (=aH/axB) for a binary mixture at 
its critical composition (for a given pressure) is 

A further point which may be noted is that a peak in fii -fiA or 
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(the integral being taken along a path of constant T and p ) ,  which is equal to 

(where the superscript * denotes a standard value for a solute species, and the 
superscript * a value for a pure substance). If the second derivative vanishes at the 
critical point, then expression (1 1) is necessarily finite, even at T = Tcrit. Any peak in 
fiB - fiA, as the critical point is approached by varying the temperature, is then a not 
very dramatic one. This detailed argument relates to an ordinary critical point, but its 
conclusion may be expected to apply to tricritical and polycritical points also. 

4.1. Relations applying i f  there is one additional component 

If there were one additional component, there would be not a one-dimensional but a 
two-dimensional continuum of critical, tricritical or polycritical points. In that case 
(2k-1 components), it would be possible to direct attention to a line of critical, 
tricritical or polycritical points in a (2k - 1)-dimensional section, taken at constant p ,  of 
the 2k-dimensional space that would be involved. Reasoning similar to that used above 
then gives relations 

other than A 

somewhat analogous to (7); 

other than A 

somewhat analogous to (8); and 

other than A 

somewhat analogous to (10). 

5. An alternative form of the relations 

The relations just inferred have been presented in terms of the effect of pressure on the 
critical, tricritical or polycritical temperature and composition, in the case of a system of 
2k - 2 components: and in terms of the effect of temperature on the critical, tricritical or 
polycritical composition at a given pressure, in the case of a system of 2k-1  
components. A slight modification of the argument gives equivalent results expressed 
in terms of the effect of adding the component L. That is, the results can be presented, 
for a system of 2k -2 components, in terms of the effect of adding L on a critical, 
tricritical or polycritical temperature, pressure, and composition-so-far-as-the-other- 
components-are-concerned: and in a corresponding way for a system of 2k-1  
components at a given pressure. 
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Let yi, for any i other than L, denote the quantity 

other than L 

(It is, in a sense, 'what the mole fraction of i would be if L were not there'.) Use the set 
of variables 

{T, P, YB, Yc. YK, XL} 

and let omission of subscripts in a partial derivative now denote the constancy of all but 
one of the members of this set. 

The relevant analogue of equation ( 5 )  above for the case of 2k - 2 components is 
then 

(16) 
-5.------ dTk a 4 l a X L  a4/ap dpk ad/aYi dyik 
dxL a4laT ad/aT dxL Z i  ( W K )  

other than 
A and L 

and it follows, taking 4 to be C,, Cp/T, or aV/aT, that analogues of (7), (8) and (10): 

other than 
A and L 

other than L 

other than 
A and L 

other than L 

and 

other than 
A and L 

other than L 

resultt for a case in which the Pippard-like plots are roughly linear. 

t Use is made, in the course of the argument, of relations of the type 

J Z / J X ~ = & -  E 
dl i 

other than L 

aZ/Jyi = ( l -x~)( i?i  - 2 ~ )  
and 

which are readily inferred, for any extensive quantity 2, from the Gibbs-Duhem equation for Z. 
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If, instead, there are 2k - 1 components, the corresponding relations are: 

other than 
A and L 

other than L 

and two others which resemble equations (18) and (19) in much the same way that this 
resembles (17) (absence of any derivative of p k ,  and the fact that the derivatives that are 
present are partial). It may be noted that, if addition of L did not affect the various Yik ,  

then these three relations would be virtually the saxxe as the approximate relations 
which have been deduced (Wright 1972a) for the effect of composition on the A 
temperature of such binary mixtures as 4He f 3He. 

Appendix by R A G Gibson and P G Wright 

A direct clarification should perhaps be given of the distinction between cases which 
give relations of Pippard's original type and cases which give relations of the less simple 
type obtained by Subramanyam et a1 (1974). To this end, consider, for three or more 
variables, the application of (say) the approach used by Zemansky (1968) for a 
deduction of the ordinary case of Pippard's relations for the two variables (T, p). 

For definiteness, take an instance in which there are three variables (T, p, H')?. Let 
Q denote the continuum of points analogous to those of a A curve as considered by 
Zemansky. Then 

d( U + p V - TS - @OHM) = -S d T  + V dp - $/LOX d[H '1 
and any attempt to obtain a set of Pippard's relations would proceed by taking it that 
(dS/dT)Q, (dV/dT)Q and (d,y/dT)Q do not vary to any drastic extent. 

Now 

and it could appear at first sight that taking this quantity to be roughly constant gives 
only a relation 

while similar companion relations would be obtained by taking (dV/dT), and (d,y/dT), 
to be roughly constant. These are not of Pippard's original simple type, yet relations of 
that type have been published for various situations involving three or more variables 
(table 1). 

The resolution of any difficulty lies in noticing that there are two distinct cases to be 
considered, according to whether (in the three-dimensional space with coordinates T, p 
and Hz) Q constitutes a one-dimensional or a two-dimensional continuum. The former 

t It is to be noted that here, in contrast to the main text, H denotes a magnetic field. 
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Table 1. Two distinct cases. 

Coordinates in an 
n-dimensional space 

Critical points forming an (n - 1)- 
dimensional continuum: ‘normal’ set of 
Pippard’s relations is applicable. 

n = 2  

n = 3  

T, P A transitions of He, NH4C1, etc 
(Pippard 1956, Rice 1967, Tisza 1961, 
Buckingham and Fairbank 1961) 
A transitions in adsorbed films (Gibson 
and Wright 1975) 

Typical antiferromagnetic and 

and Bloom 1964; Skalyo et a1 1967, 
Griffiths and Wheeler 1970, Wright 
1972c) 
A transitions for such mixtures as 
4He/3He (Wright 1972a, Subramanyam 
et a1 1974) 
Simple A transitions in small particles 
(Wright and Gibson 1975) 
Antiferromagnetic and antiferroelectric 
transitions in adsorbed films (Gibson 
and Wright 1978) 

T, rD 

T, p ,  H2 or 
E2 antifcrroelectric transitions (Sawatzky 

T, P, XB 

T, p ,  m-1’3 

T, T - D ,  H2 or 
E2 

n = 4  T, p, xB, H2 Antiferromagnetic and antiferroelectric 
or E’ transitions in mixtures (Wright 1972b) 

n = 7 T, X I ,  A transitions in strained elastic solids 
(Viswanathan 1963, Garland 1964, 
Janovec 1966) 

X2 . .  . X ,  

Critical points forming an (n - 2)- 
dimensional continuum: ‘normal’ 
set of Pippard’s relations is not 
applicable, but generalisations 
are (provided that n 3 3 )  

(Ordinary liquid-vapour critical 
point: an isolated point only) 

Ordinary liquid-vapout critical 
points as affected by a magnetic 
or electric field 

Ordinary critical mixing for two 
components (Subramanyam et a1 
1974) 

Ordinary critical mixing for two 
components, as affected by 
magnetic or electric field 

case, of a curve Q in a three-dimensional space, may be exemplified by the ordinary 
liquid-vapour critical phenomenon as affected by a field; the latter, of a surfQce Q in a 
three-dimensional space, may be exemplified by a typical antiferromagnetic transition. 

(i) In the case of a curve Q in a three-dimensional space, there is indeed only a 
relation of the type (A2) to be obtained from the condition (dS/dT)Q = 0, another of the 
type from the condition (d V/dT)o = 0, and a third of that type from the condition 
(d,y/dT)Q = 0. It is a set of three relations of this type that is predicted to apply, not a set 
of six Pippard’s relations of the original simpler type. 

(ii) In the case of a surface Q in a three-dimensional space, Zemansky’s argument 
based on equating a (dS/dT)o to zero can be applied twice: first to a section of this 
surface at constant H, and then to a section at constant p .  This gives rise to two separate 
relations 

and 
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Two more result from equating a (d V/dT)o to zero: first for a section of the surface Q at 
constant H, and then for a section at constant p .  Two more result from similar reasoning 
for a (d,y/dT)o. These are the six relations constituting the ‘normal’ set of simple 
Pippard’s relations (Wright 1972c) for (say) an antiferromagnetic transition. Moreover, 
with this set of six, it is predicted unambiguously that the slope of a graph of (say) 
- ( a S / a p ) ~ , ~  against ( I ~ S / ~ T ) ~ . H  is approximately equal to ( a T ~ / a p ) ~ ;  but with the set 
of three, arising in (i), it is not evident that the slope of such a graph, even if roughly 
linear, could be so interpreted. 

The demonstrable possibility of obtaining the ‘normal’ set for the case of a A surface 
in such a way (or, as is equally demonstrable, of obtaining it by Rice’s approach) seems 
sufficient to validate the ‘normal’ set of Pippard’s relations for any instance in which the 
A points form an (n - 1)-dimensional continuum in an n-dimensional space (n 2 2). 
Such instances include typical antiferromagnetic and antiferroelectric transitions in 
pure substances or mixtures in bulk, or in adsorbed layers. 

When, however, it is only an (n - 2)-dimensional continuum that is involved, the 
‘normal’ set has to be replaced by relations of the type found by Subramanyam et a1 
(1974). For the specific case of the ordinary liquid-vapour critical phenomenon in a 
field, these are 

together with two similar equations in which S is replaced by V and by x. 
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